log[5](4x+3)-log[5](x-1)=2

Simple and best practice solution for log[5](4x+3)-log[5](x-1)=2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for log[5](4x+3)-log[5](x-1)=2 equation:


Simplifying
log[5](4x + 3) + -1log[5](x + -1) = 2

Reorder the terms:
glo * 5(3 + 4x) + -1log[5](x + -1) = 2

Reorder the terms for easier multiplication:
5glo(3 + 4x) + -1log[5](x + -1) = 2
(3 * 5glo + 4x * 5glo) + -1log[5](x + -1) = 2
(15glo + 20glox) + -1log[5](x + -1) = 2

Reorder the terms:
15glo + 20glox + -1glo * 5(-1 + x) = 2

Reorder the terms for easier multiplication:
15glo + 20glox + -1 * 5glo(-1 + x) = 2

Multiply -1 * 5
15glo + 20glox + -5glo(-1 + x) = 2
15glo + 20glox + (-1 * -5glo + x * -5glo) = 2
15glo + 20glox + (5glo + -5glox) = 2

Reorder the terms:
15glo + 5glo + 20glox + -5glox = 2

Combine like terms: 15glo + 5glo = 20glo
20glo + 20glox + -5glox = 2

Combine like terms: 20glox + -5glox = 15glox
20glo + 15glox = 2

Solving
20glo + 15glox = 2

Solving for variable 'g'.

Move all terms containing g to the left, all other terms to the right.

Reorder the terms:
-2 + 20glo + 15glox = 2 + -2

Combine like terms: 2 + -2 = 0
-2 + 20glo + 15glox = 0

The solution to this equation could not be determined.

See similar equations:

| 5(3+4x)-5=30 | | x^4+2x^2+1=25 | | 13.1-.7z=8.2 | | 35x^4=0 | | 10y+-10+4=4 | | Sinx+2=0 | | bh+rt=mn-vt | | 16-2t=5t | | 16-2t=5t | | 9+x=20x-10 | | 4x+8-16=12 | | -7(2x-1)+4(x+2)=30-9(3x-4) | | 10x+2-4x=2x+18 | | -10x+x-63=81 | | sen(x)=0.65 | | x*2-6x+4-3x^2+4x= | | sin(x)=0.65 | | -90+6x+3x=54 | | 3r-2r+4R= | | 2(X+135)+135-500=X | | X*25=40 | | -3x-(-2y)+12x-38= | | 4(y-6)=3(y+1) | | 5x+4=109findx | | 3x+22=4(3x+1) | | 3x+11=2(3x+10) | | 7p+2=5p+6 | | -5x-y+3+7x+2y-7= | | -6xy-3y= | | 4x^3+18x^2+22x+6=0 | | 3(4x-5)=-3x | | 3y+5=5y+7 |

Equations solver categories